10.4 Extra Practice

In Exercises 1 and 2, identify the amplitude and period of the graph of the function.

In Exercises 3-6, identify the amplitude and period of the function. Then graph the function and describe the graph of g as a transformation of the graph of its parent function.

3. $g(x) = 4 \sin x$ **4.** $g(x) = \cos \pi x$

5.
$$g(x) = 5 \sin 4x$$

6. $g(x) = \frac{1}{4} \cos 2x$

7. Write an equation of the form $y = a \cos bx$, where a > 0 and b > 0, so that the graph has the given amplitude and period.

a.	amplitude: 1	b.	amplitude: 3
	period: 3		period: 4
c.	amplitude: 12	d.	amplitude: $\frac{1}{3}$
	period: 2π		period: π

In Exercises 8–11, graph the function.

8. $g(x) = \cos x + 3$ 9. $g(x) = 2 \sin x - 1$ 10. $g(x) = \sin \frac{1}{2}(x - \pi) - 2$ 11. $g(x) = \cos \frac{1}{2}(x + \pi) - 4$

In Exercises 12 and 13, write a rule for *g* that represents the indicated transformations of the graph of *f*.

- 12. $f(x) = \frac{1}{2} \cos 3x$; translation 2 units up, followed by a reflection in the line y = 2
- **13.** $f(x) = \frac{1}{3} \sin \pi x$; translation 3 units down, followed by a reflection in the line y = -3